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Abstract We recently reported an algorithm to count Kekulé (resonance) structures
for convex cyclofusenes using a combinatorial/geometric approach. Previously, we
presented an algorithm for counting resonance structures for parallelogram-like benz-
enoids with holes by counting descending paths using rectangular meshes with holes.
In this article, we employ a similar combinatorial/geometric approach to determine
algorithms that will facilitate counting of the resonance structures in parallelogram-
like benzenoids with no holes.
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1 Introduction

We discuss a class of polycyclic aromatic hydrocarbons termed parallelogram-like
benzenoids. Figure 1 depicts a parallelogram-like benzenoid.

We have previously described an algorithm for counting the number of configura-
tions of π -bonds (Kekulé or resonance structures) for parallelogram-like benzenoids
with parallelogram-like holes by counting descending paths in a corresponding rectan-
gular mesh with rectangular holes [1]. Using a combinatorial/geometric approach, we
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Fig. 1 A parallelogram-like benzenoid

recently reported an algorithm to count resonance structures for convex cyclofusenes
[2]. We defined a convex cyclofusene as a special type of coronafusene [3] in which
each hexacycle shares exactly two non-adjacent edges with its neighboring hexacy-
cles [4–6]. We also defined multiply-connected monolayered cyclofusene (MMC) as
a fused hexacyclic system with at least two interior regions called holes [7], and mul-
tiply-connected bilayered cyclofusene (MBC) as a structure derived from an MMC
by replacing each layer of hexacycles by two layers [8].

The number of resonance structures in the coronoid hydrocarbons which we termed
cyclofusene [4] has long been established [9–11]. Gordon and Davison’s algorithm
graphically illustrated the Kekulé structures for catacondensed polycyclic benzenoids
and coronoids [12]. Further refinement of Gordon and Davison’s algorithm to include
enumeration of Kekulé structures in conjugated hydrocarbons was achieved by Randić
[13]. Although there are many algorithms available for counting Kekulé structures in
polycyclic benzenoids, our analysis using the combinatorial approach [2] most closely
resembled the work of Balaban and Randić on partitioning of π -electrons in rings
of polycyclic benzenoid hydrocarbons [14]. Rispoli solved the parallelogram with a
clever induction argument [15]. Induction proofs do not shed light on the methods of
reasoning employed in obtaining the results. We address this issue with a combinatorial
approach that leads to the solution.

In this article, we use a combinatorial/geometric approach similar to that of Balaban
and Randić [14] in order to determine algorithms that will facilitate counting of the
resonance structures in parallelogram-like benzenoid with no holes such as Fig. 1.

2 Parallelogram-like benzenoids

We turn our attention to a class of polycyclic aromatic hydrocarbons termed paral-
lelogram-like benzenoids. Figure 1 depicts such a molecule. Each row has the same
number of hexacycles, and the same goes for the columns. For each parallelogram-like
benzenoid, the height of the molecule is the number of hexacycles in each column and
the width of the molecule is one more than the number of hexacycles in each row. For
the parallelogram-like benzenoid in Fig. 1, the height is three and the width is five.

123



906 J Math Chem (2012) 50:904–913

Fig. 2 One vertical π -bond per row

Fig. 3 Vertical π -bonds must
descend to the right

Fig. 4 Principle 2 is violated

We derive the equation for the number of viable resonance structures in a parallel-
ogram-like benzenoid. There are three important principles.

1. Each row must contain exactly one vertical π -bond (Fig. 2).
2. The π -bond occupying the kth rung in the j th row is denoted k( j) as shown in

Fig. 3. As we descend from any given row to the next, the vertical π -bonds must
cascade to the right, that is, as j increases, k must be non-decreasing. On the other
hand, Fig. 4 shows a non-viable resonance structure since it contains the π -bonds
3(1) and 2(2). If one were to attempt to complete the distribution of π -bonds in the
molecule, the attempt would fail.
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Fig. 5 Complete π -bond
distribution for Fig. 4

Fig. 6 A parallelogram-like
benzenoid with h = 2 and n = 4

3. The positions of the vertical π -bonds in a parallelogram-like benzenoid determine
the distribution of the remaining π -bonds, as illustrated by Fig. 5.

Parallelogram-like benzenoids of height one are straight chains. Since there is only
one row, the number of resonance structures equals the number of rungs. In the general
case, we denote the number of rungs per row, that is, the width, by n and the number
of rows, that is, the height, by h.

The parallelogram-like benzenoid in Fig. 2 has five rungs, which leaves five pos-
sible places for the vertical π -bond. According to Principle 3, the placement of the
vertical π -bond determines the remaining distribution of π -bonds. Since there are five
rungs, the number of resonance structures in Fig. 2 is 5. More generally, the number
of resonance structures of a parallelogram-like benzenoid with h = 1 is n.

We denote the number of resonance structures of a parallelogram-like benzenoid
with height h and width n by f (n, h). Thus we have

f (n, 1) = n =
(

n
1

)

Figure 6 shows a parallelogram-like benzenoid with h = 2 and n = 4. If one selects
1(1) for the placement of a π -bond, there are four possible places for the π -bond in
row 2. If one selects 2(1), there are three choices for placement of the π -bond in row
2. Selecting 3(1), yields two choices in row 2. Finally, if one selects 4(1), there is only
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Table 1 Values of f (n, 2)

as n increases from 2 to 8
n f(n, 2)

2 3

3 6

4 10

5 15

6 21

7 28

8 36

Fig. 7 A parallelogram-like
benzenoid with h = 3 and n = 4

Table 2 Values of f (n, 3)

as n increases from 2 to 7
n f(n, 3)

2 4

3 10

4 20

5 35

6 56

7 84

one choice in row 2. It follows that there are 4 + 3 + 2 + 1 = 10 resonance structures
for the parallelogram-like benzenoid shown in Fig. 6.

Table 1 lists f (n, 2) as n increases from 2 to 8.
The numbers in the right column are the triangular numbers, so we have

f (n, 2) = n(n + 1)

2
=

(
n + 1

2

)
(1)

We move on to h = 3 (Fig. 7). Table 2 lists f (n, 3) as n increases from 2 to 7.
The numbers in the right column are pyramidal (that is, sums of consecutive trian-

gular numbers beginning with 1), so we have

f (n, 3) = n(n + 1)(n + 2)

6
=

(
n + 2

3

)
(2)
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Fig. 8 Decision tree

The formulas for f (n, h) for h = 1, 2, and 3, suggest the following general formula

f (n, h) =
(

n + h − 1
h

)
(3)

which a glance at the decision tree of Fig. 8 confirms. We simplify (3) by substituting
m for n − 1, m being the number of cycles in each row, obtaining

f (m, h) =
(

m + h
h

)
(4)

in accordance with Rispoli’s result [15].
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3 Diminished parallelogram-like benzenoids

In a diminished parallelogram-like benzenoid, the first row has more than one hexa-
cycle, and each successive row increases its length by one hexacycle until the middle
(longest) row. The subsequent rows decrease by one hexacycle until the last row, which
has as many hexacycles as the first row. Figure 9a yields an example of a diminished
parallelogram-like benzenoid. Let k denote the number of vertical bonds in the first
row, and let n denote the number of vertical bonds in the middle (longest) row. Note
that k and n determine the entire molecule. In Fig. 9a, for example, k = 3 and n = 5.

Note the line of symmetry, L , bisecting the molecule into mirror images. The dis-
tribution of π -bonds in a benzenoid corresponds to a perfect matching in its graph,
the latter being equitable bipartite. That is, one can color each vertex either black or
white and adjacencies link vertices of opposite color. The “equitable” indicates that
the two color sets have the same cardinality. The following theorem asserts this.

Fig. 9 a Diminished
parallelogram-like benzenoid.
b A distribution of π -bonds for
the molecule in Fig. 9a
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Theorem Given a bipartite graph, G, such that there is a line of symmetry, L, which
only intersects edges, then G is equitable.

Proof If one colors the vertices above the line of symmetry, L , the corresponding ver-
tices below the line of symmetry will be oppositely colored, from which equitability
follows.

The number of vertical π -bonds in each row of the molecule starts at 1 for the first
(top) row and increments by 1 until we reach the middle row, after which the count
decreases by one π -bond in each row until the final row is reached with one vertical
π -bond. In Fig. 9b, for example, there is one vertical π -bond in the first row, two in
the second, three in the third, two in the forth, and one in the fifth row. ��
Theorem The number of vertical π -bonds in the molecule is the square of the number
of vertical π -bonds in the middle row.

Proof The theorem follows by showing that

1 + 2 + 3 + · · · + n + (n − 1) + (n − 2) + · · · + 3 + 2 + 1 = n2

Observe that

1 + 2 + 3 + · · · + n + (n − 1) + (n − 2) + · · · + 3 + 2 + 1 =
[1 + 2 + 3 + · · · + n] + [(n − 1) + (n − 2) + · · · + 3 + 2 + 1]

= n(n + 1)

2
+ n(n − 1)

2
= n2

Figure 9b, for example, yields 1 + 2 + 3 + 2 + 1 = 32 = 9
In assigning the vertical π -bonds, the π -bond distribution in any row must interlace

with the π -bond distribution(s) in the above and/or lower row. ��
The diminished parallelogram-like benzenoid depicted in Fig. 10a, for example, has

k = 3 and n = 4. As the rows descend from the top the number of vertical π -bonds
increases from one to two and then decreases back to one.

This problem is initially solved by placing the vertical π -bonds in the middle row,
and then the number of possible π -bond placements in the entire molecule is counted.
In Fig. 10a, there are six ways to select exactly two vertical π -bonds in the middle
row. The number of resonance structures for each of the six cases will be counted,
and the sum of these numbers will yield the number of resonance structures for the
molecule shown in Fig. 10a. Since Fig. 10a is symmetrical, there will be mirror images
in two of the six cases for placement of the middle-row π -bonds. For simplicity, one
of each mirror image is counted and the result is doubled. Figure 10b–e depict the four
arrangements of the middle row π -bonds from which the final count is obtained. The
remaining π -bonds in the molecule are omitted for simplicity.

Arrangements I and II (Fig. 10b, c) have mirror images. The number of total reso-
nance structures is doubled.

A glance at arrangement I (Fig. 10b) shows that the vertical π -bonds in the middle
row are consecutive. This leaves only one way to distribute the vertical π -bonds in the
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Fig. 10 a Diminished parallelogram-like benzenoid, k = 3 and n = 2. b Arrangement I. c Arrangement
II. d Arrangement III. e Arrangement IV

top and bottom rows, in which case, the number of resonance structures is one. Since
this has a mirror image for the molecule it is counted twice, yielding two.

Arrangement II (Fig. 10c) is more complicated because of the top and bottom rows.
Since there are two choices for vertical π -bond placement in the top row, and two in
the bottom row, there are four ways to place one vertical π -bond in the top row and one
in the bottom. Since Arrangement II has a mirror image, the four is doubled, yielding
eight possible resonance structures for Arrangement II.

Arrangement III (Fig. 10d) is much like Arrangement I since the two vertical
π -bonds in the middle row are consecutive. This leaves only one choice for the vertical
π -bonds in the top and bottom row. Arrangement III adds one to the total.

Arrangement IV (Fig. 10e) leaves us with the most options for π -bond placement.
The vertical π -bonds in the middle row facilitate three choices for the top and bottom
rows. Since one vertical rung out of three rungs in each of the top and bottom rows
must be selected, nine possible configurations of π -bonds in Fig. 10e are obtained.

Addition of the subtotals yields the number of resonance structures for the molecule,
that is, 2 + 8 + 1 + 9 = 20.

4 Conclusion

As mentioned earlier, Rispoli used an induction argument to prove his resonance
structure counts in parallelogram-like benzenoids [15]. We devised an algorithm that
facilitates resonance structure counts for this type of molecule with a combinatorial
approach. We extended this analysis to diminished parallelogram-like benzenoids.
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